Deletion of the ageing gene p66(Shc) reduces early stroke size following ischaemia/reperfusion brain injury.
نویسندگان
چکیده
AIMS Stroke is a leading cause of morbidity and mortality, and its incidence increases with age. Both in animals and in humans, oxidative stress appears to play an important role in ischaemic stroke, with or without reperfusion. The adaptor protein p66(Shc) is a key regulator of reactive oxygen species (ROS) production and a mediator of ischaemia/reperfusion damage in ex vivo hearts. Hence, we hypothesized that p66(Shc) may be involved in ischaemia/reperfusion brain damage. To this end, we investigated whether genetic deletion of p66(Shc) protects from ischaemia/reperfusion brain injury. METHODS AND RESULTS Transient middle cerebral artery occlusion (MCAO) was performed to induce ischaemia/reperfusion brain injury in wild-type (Wt) and p66(Shc) knockout mice (p66(Shc-/-)), followed by 24 h of reperfusion. Cerebral blood flow and blood pressure measurements revealed comparable haemodynamics in both experimental groups. Neuronal nuclear antigen immunohistochemical staining showed a significantly reduced stroke size in p66(Shc-/-) when compared with Wt mice (P < 0.05, n = 7-8). In line with this, p66(Shc-/-) mice exhibited a less impaired neurological function and a decreased production of free radicals locally and systemically (P < 0.05, n = 4-5). Following MCAO, protein levels of gp91phox nicotinamide adenine dinucleotide phosphate oxidase subunit were increased in brain homogenates of Wt (P < 0.05, n = 4), but not of p66(Shc-/-) mice. Further, reperfusion injury in Wt mice induced p66(Shc) protein in the basilar and middle cerebral artery, but not in brain tissue, suggesting a predominant involvement of vascular p66(Shc). CONCLUSION In the present study, we show that the deletion of the ageing gene p66(Shc) protects mice from ischaemia/reperfusion brain injury through a blunted production of free radicals. The ROS mediator p66(Shc) may represent a novel therapeutical target for the treatment of ischaemic stroke.
منابع مشابه
Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke.
AIM Constitutive genetic deletion of the adaptor protein p66(Shc) was shown to protect from ischaemia/reperfusion injury. Here, we aimed at understanding the molecular mechanisms underlying this effect in stroke and studied p66(Shc) gene regulation in human ischaemic stroke. METHODS AND RESULTS Ischaemia/reperfusion brain injury was induced by performing a transient middle cerebral artery occ...
متن کاملGenetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways.
AIMS Several intracellular mediators have been implicated as new therapeutic targets against myocardial ischaemia and reperfusion injury. However, clinically effective salvage pathways remain undiscovered. Here, we focused on the potential role of the adaptor protein p66(Shc) as a regulator of myocardial injury in a mouse model of cardiac ischaemia and reperfusion. METHODS AND RESULTS Adult m...
متن کاملDeletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet.
Several experimental and clinical studies have shown that oxidized low-density lipoprotein and oxidation-sensitive mechanisms are central in the pathogenesis of vascular dysfunction and atherogenesis. Here, we have used p66(Shc-/-) and WT mice to investigate the effects of high-fat diet on both systemic and tissue oxidative stress and the development of early vascular lesions. To date, the p66(...
متن کاملA new approach for the investigation of reperfusion-related brain injury.
Effective stroke therapies require recanalization of occluded cerebral blood vessels; however, early reperfusion can cause BBB (blood-brain barrier) injury, leading to cerebral oedema and/or devastating brain haemorrhage. These complications of early reperfusion, which result from excess production of ROS (reactive oxygen species), significantly limit the benefits of stroke therapies. Here, we ...
متن کاملAdaptor protein p66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage.
Increased cyclic stretch to the vessel wall, as observed in hypertension, leads to endothelial dysfunction through increased free radical production and reduced nitric oxide bioavailability. Genetic deletion of the adaptor protein p66(Shc) protects mice against age-related and hyperglycemia-induced endothelial dysfunction, as well as atherosclerosis and stroke. Furthermore, p66(Shc) mediates va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European heart journal
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2013